Programming

Probabilistic Graphical Models: Principles And Applications PDF

Probabilistic Graphical Models: Principles And Applications PDF

Probabilistic Graphical Models: Principles And Applications PDF

Download the book - PDF File - 8.5 MB

Download

Probabilistic Graphical Models: Principles And Applications PDF

Preface

This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Features: presents a unified framework encompassing all of the main classes of PGMs; describes the practical application of the different techniques; examines the latest developments in the field, covering multidimensional Bayesian classifiers, relational graphical models and causal models; provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter.

About the author

P. Anderson

Love to collect books from all websites and share it with people

Leave a Comment

Pin It on Pinterest

Shares
Share This